The correct option is D Em=ρ0R9ε
Using Gauss's law the field at a distance r from center of the sphere is
E.4πr2=Qenϵ
here, Qen=∫r0ρ(4πr2)dr=4πρ0∫r0[1−r/R]r2dr=4πρ0[r3/3−r4/4R]r0=4πρ0[r3/3−r4/4R]
Thus, E.4πr2=4πρ0[r3/3−r4/4R]ϵ
or E=ρ0ϵ[r/3−r2/4R]...(1)
For max E, dEdr=0=ρ0ϵ[1/3−2r/4R]
or 1/3=r/2R⇒r=rm=2R3
Putting the value r=rm=2R/3 in (1), we get
Emax=ρ0ϵ[2R/33−(2R/3)24R]=ρ0Rϵ[2/9−1/9]=ρ0R9ϵ