The maximum electric field intensity on the axis of a uniformly charged ring of charge q and radius R will be
Given,
Radius of ring =R
Total Charge on ring =q
Electric field on x-axis ∫dE=∫14πεodQ(√R2+x2)2cosθ
E=14πεoq(√R2+x2)2cosθ
sinθ=R√R2+x2
Square on both side
R2+x2=R2sin2θ
After putting value
E=14πεoqR2cosθsin2θ
For point of maxima, differentiate this equation with respect to θ and equal it to zero.
dEdθ=14πεoqR2d(cosθsin2θ)dθ
dEdθ=14πεoqR2(cosθ×2sinθ×cosθ+sin2θ(−sinθ))
dEdθ=14πεoqR2(2cos2θsinθ−sin3θ)=0
2cos2θsinθ−sin3θ=0
tanθ=√2
sinθ=√2√2+1=√23, cosθ=1√2+1=1√3
Double differentiation, to evaluate that it is maximum or minimum.
d2Edθ2=ddθ2[14πεoqR2(2cos2θsinθ−sin3θ)]
ddθ2(2cos2θsinθ−sin3θ)=2cos2θcosθ+2×2cosθ(−sinθ)sinθ−3sin2θcosθ
=2cos3θ−7sin2θcosθ
After putting values of sinθ&cosθ
d2Edθ2=2(1√3)3−7(√23)2(1√3)=−2.3
Hence, at θ=tan−1√2=54.7o, Electric field is maximum.
E=14πεoqR2cosθsin2θ
E=14πεoqR2(1√3)(√23)2
Maximum Electric field, E=14πεoqR2(23√3)N/C