The maximum value of 1+sin(π4+θ)+2cos(π4−θ) for real value of θ is
=1+sinθ+cosθ√2+2sinθ+cosθ√2
=1+3sinθ+cosθ√2
max(sinθ+cosθ)=√2
f(x)=sinθ+cosθ f′(x)=sinθ−cosθ=0 So,sinθ=cosθ=1√2
So, max(f(x))=2√2=√2
So, max of the eqn=3+1=4