The maximum value of 12sinθ−9sin2θ is-
Let f(θ) be the given function,
f(θ)=12sinθ−9sin2θ
Differentiate the given function with respect to θ,
f′(θ)=12cosθ−18sinθcosθ
=6cosθ(2−3sinθ)
Put f′(θ)=0
6cosθ(2−3sinθ)=0
6cosθ=0,2−3sinθ=0
cosθ=0,sinθ=23
θ=π2,θ=sin−123
Substitute the value of θ in the given function,
f(π2)=12sinπ2−9sin2(π2)
=12−9
=3
f(sin−123)=12sin(sin−123)−9(sin(sin−123))2
=12(23)−9(23)2
=−4
Therefore, the maximum value of the given function is 3.