1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain
The maximum v...
Question
The maximum value of
1
x
x
is
(a) e (b) e
e
(c) e
1/e
(d)
1
e
1
/
e
Open in App
Solution
Let
f
x
=
1
x
x
.
f
x
=
1
x
x
⇒
log
f
x
=
log
1
x
x
⇒
log
f
x
=
x
log
1
x
⇒
log
f
x
=
-
x
log
x
Differentiating both sides with respect to x, we get
1
f
x
×
f
'
x
=
-
x
×
1
x
+
log
x
×
1
⇒
f
'
x
=
-
1
x
x
1
+
log
x
.....(1)
For maxima or minima,
f
'
x
=
0
⇒
-
1
x
x
1
+
log
x
=
0
⇒
1
+
log
x
=
0
1
x
x
>
0
⇒
log
x
=
-
1
⇒
x
=
e
-
1
=
1
e
Now,
f
'
'
x
=
-
1
x
x
×
1
x
+
1
+
log
x
×
-
1
x
x
1
+
log
x
[Using (1)]
⇒
f
'
'
1
e
=
-
e
1
e
×
e
+
1
+
log
1
e
×
-
e
1
e
1
+
log
1
e
log
1
e
=
log
e
-
1
=
-
1
⇒
f
'
'
1
e
=
-
e
1
e
+
1
-
0
=
-
e
1
e
+
1
⇒
f
'
'
1
e
<
0
So,
x
=
1
e
is the point of local maximum of f(x).
∴ Maximum value of f(x) =
1
1
e
1
e
=
e
1
e
Thus, the maximum value of
1
x
x
is
e
1
e
.
Hence, the correct answer is option (c).
Suggest Corrections
4
Similar questions
Q.
The maximum value of
f
(
x
)
=
x
1
x
is
Q.
The maximum value of x
1
/x
, x>0 is
(a) e
1
/e
(b)
1
e
e
(c) 1
(d) none of these
Q.
The maximum value of
(
1
x
)
x
is