The maximum value of (2(a−x)(x+√x2+b2) ∀ x,a,b∈R) is :
a2+b2
Given: 2(a−x)(x+√x2+b2)
put t=x+√x2+b2
⇒√x2+b2=t−x
⇒x2+b2=t2+x2−2tx
⇒2tx=t2−b2
⇒x=t2−b22t
∴y=2(a−x)t
⇒y=2at−2xt
⇒y=2at−(t2−b2)
⇒y=2at−(t2−b2)+(a2−a2)
⇒y=(a2+b2)−(a2+t2−2at)
⇒y=(a2+b2)−(t−a)2
⇒y≤ a2+b2