The correct option is B e−1
Let the vertices of rectangle be O(0,0),A(0,y),B(x,y),C(x,0) therefore, AreaA=xy=x(lnxx2)=lnxx
For maximum area ,dAdx=0
⇒1−lnxx2=0
⇒x=e
Now,d2Adx2=−(3−2lnx)x3
At x=e, d2Adx2<0
therefore, A is maximum at x=e
Area =lnxx=lnee=1e