wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The maximum value of ∣∣ ∣ ∣∣1+sin2xcos2x4cos2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x∣∣ ∣ ∣∣ is

A
8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 8
∣ ∣ ∣1+sin2xcos2x4cos2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x∣ ∣ ∣
R1+R1R2,R2R2R3
=∣ ∣ ∣114cos2x4sin2x011sin2xcos2x1+4sin2x∣ ∣ ∣
c1+c1+c2
=∣ ∣014cos2x4sin2x1111cos2x1+4sin2x∣ ∣
=1(1+4sin2x+1)+4(cos2xsin2x)(cos2x1)
=2+4sin2x+(4cos2x4sin2x)(sin2x)
=2+4sin2x4cos2xsin2x+4sin2xsin2x
=2+4sin2x4cos2x(1cos2x)2+4sin2x(1cos2x)2
=2+4sin2x2cos2x(1cos2x)+2sin2x(1cos2x)
=3+6s2xsin4x2cos2x+cos4x
At x=114
ymax=3+6×1001
=91
ymax=8

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon