The maximum value of cos2π3-x-cos2π3+x is
-32
12
32
Explanation for the correct option:
cos2π3-x-cos2π3+x
Let, A =π3+x, B =π3-x
Using the formula,
cos2B–cos2A=sinA–B2sinA+B2
⇒cos2π3–x–cos2π3+x=sinπ3+x–π3+x2.sinπ3+x+π3–x2
=sin2x.sinπ3=32sin2x
We know that the maximum value of sin2x=1
Hence, Option(C) is the correct answer.