The maximum value of cosα1.cosα2........cosαn, under the restrictions 0≤α1,α2,.........αn ≤π2 and
cotα1.cotα2........cotαn = 1 is
(a) Here (cot α1).(cot α2)....(cot αn)= 1
∴ cosα1.cosα2........cosαn = sinα1.sinα2........sinαn
Now, (cosα1.cosα2........cosαn)2
= (cosα1.cosα2........cosαn) (cosα1.cosα2........cosαn)
= (cosα1.cosα2........cosαn) (sinα1.sinα2........sinαn)
= 12n sin 2α1.sin 2α2........sin 2αn
But each of sin 2αi ≤ 1
(cosα1.cosα2........cosαn)2 ≤ 12n
But each of cos αi, is positive.
∴ cosα1.cosα2........cosαn ≤ √12n = 12n/2.