The maximum value of (cosα1)(cosα2)...(cosαn) under the restriction 0≤α1,α2,....,αn≤π/2 and (cotα1)(cotα2)...(cotαn)=1 is
It is given that
cotα1.cot(α2)...cot(αn)=1
Or
cos(α1).cos(α2)..cos(αn)=sin(α1).sin(α2)..sin(αn)
cos(αi)=sin(αi).
This happens when αi=π4 or
5π4 in [0,2π].
Now for cos(α1).cos(α2)..cos(αn) to be maximum, α1=α2=α3=..αn=αi.
It is also given that
0<αi<π2.
Hence
αi=α1=α2=..αn=π4
Hence
cos(α1).cos(α2)..cos(αn)
=1√2n
=12n2.