The maximum value of cosα1.cosα2......cosαn,
under the restrictions 0≤α1α2,.....,αn≤π2andcotα1.cotα2......cotαn=1 is
A
12n2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12n2 Here(cotα1).(cotα2).....(cotαn)=1 ∴cosα1.cosα2...cosαn=sinα1.sinα2...sinαn
Now, (cosα1.cosα2...cosαn)2 =(cosα1.cosα2...cosαn)=(cosα1.cosα2...cosαn) =(cosα1.cosα2...cosαn)(sinα1.sinα2...sinαn) =12nsin2α1.sin2α2...sin2αn.
But each of sin2α1≤1 ∴(cosα1.cosα2...cosαn)2≤12n.
But each of cosα1 is positive. ∴cosα1.cosα2....cosαn≤√12n=12n2.