The maximum value of f(x)=3x2+9x+173x2+9x+7 is 5k+1, then the value of k is ........
Open in App
Solution
Let y=3x2+9x+173x2+9x+7=1+103x2+9x−7 Now, 3x2+9x+7=3(x2+3x)+7 =3(x+32)2+14≥14 for all x∈R. Maximum value of 103x2+9x−7 is 40. Maximum value of y is 1+40=41 ∴5k+1=41 ⇒k=8