The correct option is C e1e
f(x)=x1x⇒lnf(x)=1xlnx⇒f′f=1x2−1x2lnx
For maxima or minima
f′=0⇒1−lnx=0⇒x=e
Checking for maxima,
f′′f−(f′)2f2=−2x3−1x3+2x3lnx
Putting f′=0
⇒f′′f=−3e3+2e3⇒f′′=e1e(−3e3+2e3)<0
So at x=e the function has maxima
The maxima is =e1e