The maximum value of (1x)2x2 is
Let
y=(1x)2x2
Or
lny=−2x2lnx
Now
y′=−y[4xlnx+2x]
=−(1x)2x2(4xlnx+2x)
Now
(1x)2x2 cannot be equal to zero.
Hence 4xln(x)+2x=0
Or
2x(2ln(x)+1)=0
Or
x=0 or lnx=−12 ⇒x=e−12
Now f(0) is not defined.
Hence
y=e1e.