wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The maximum value of y=1sin6x+cos6x is

Open in App
Solution

y=1sin6x+cos6xWeknowthata3+b3=(a+b)33ab(a+b)AndSomeImpResultsaresin2x+cos2x=1and2sinxcosx=sin2xIfa=sin2xandb=cos2xThensin6x+cos6x=(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)Sowehavesin6x+cos6x=13sin2xcos2xsin6x+cos6x=134sin22xForytobemaximumsin6x+cos6xshouldbeminimumSosin22x=1ymax=1134=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon