The maximum value of f(x)=3x2+9+173x2+9x+7 is 5k+1, Then k is-
Open in App
Solution
Let y=3x2+9x+173x2+9x+7 =1+103x2+9x+7 ....(1) Now, 3x2+9x+7=3(x2+3x)+7 ⇒(x+32)2+14 Since, (x+32)2≥0 ⇒(x+32)2+14≥14 for all xϵR ⇒3x2+9x+7≥14 Maximum value of 103x2+9x+7 is 40 Maximum value of y is 1+40=41 ∴5k+1=41 ⇒k=8.