The maximum value of f(x)=sinx(1+cosx) is
334
332
33
3
Step 1:Solve for the maximum value of f(x)=sinx(1+cosx)
f(x)=sinx(1+cosx)f'(x)=sinx(-sinx)+(1+cosx)cosx=-sin2x+cosx+cos2x=cos2x+ cosx=2cos2x-1+cosx=2cos2x+2cosx-cosx-1=2cosx(cosx+1)-1(cosx+1)=(2cosx-1)(cosx+1)
Let f'(x)=0
Therefore cosx=12,cosx=-1
The maximum value occurs at x=Ï€3
Hence fπ3=sinπ3(1+cosπ3)
=32(1+12)=32(32)=334
Hence the maximum value of f(x)=sinx(1+cosx) is 334.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2