The maximum value of f(x)=[x(−1)+1]13,0≤x≤1 is\\
a) (13)13
b) 12
c) 1
d) zero
Let f(x)=[x(−1)+2]13,0≤x≤1
=(x2−x+1)13
On differentiating w.r.t x, we get
f′(x)=13(x2−x+1)13−1(2x−1)=1(2x−1)3(x2−x+1)23
Now, put f′(x)=0⇒2x−1=0⇒x=12ϵ[0,1]
So, x=12 is a critical point.
Now, we evaluate the value of f at critical point x=12 and at the end points of the interval [0,1].
At x=0f(0)=(0−0+1)13=1At x=1f(1)=(1−1+1)13=1At x=12,f(12)=(14−12+1)13=(34)13
∴ Maximum value of f(x) is 1 at x=0, 1.
Hence, (c) is the correct option.