The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is:
7
5
34
Explanation for the correct option:
Solve for the maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x
C1→C1+C2=21+cos2xcos2x2cos2xcos2x1cos2xsin2xR1→R1-R2=0102cos2xcos2x1cos2xsin2x=(-1)2sin2x-cos2xf(x)=cos2x-2sin2x
The maximum value of acosx+bsinx is a2+b2
Therefore the Maximum value of f(x)=12+-22
=5
Hence the maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2xis 5.
Hence, the correct answer is option (B)
If 1x1123051032x1-2=0, then the value of x is