The maximum value of (cosα1).(cosα2)...(cosαn), under the restrictions 0≤α1,α2,...αn≤π2 and (cotα1).(cotα2)...(cotαn)=1 is :
Given condition:
(cotα1).(cotα2)...(cotαn)=1
⇒∏ni=1cotαi=1
⇒∏ni=1cosαi∏ni=1sinαi=1
⇒∏ni=1cosαi=∏ni=1sinαi)
⇒cosα1cosα2cosα3....cosαn=sinα1sinα2sinα3.....sinαn
This is possible only if α1=α2=α3=α4....=αn=π4
Now, the maximum value of cosα1cosα2cosα3....cosαn
=cosπ4cosπ4cosπ4....cosπ4
=1√2.1√2.1√2.1√2....n-times
=(1√2)n
=(1212)n
=12n2
∴cosα1cosα2cosα3....cosαn=12n2
Hence, Option A is correct.