The maximum value of logxx in 2,∞ is
1
2e
e
1e
Explanation for the correct option
Solve for the maximum value of logxx in 2,∞
y=logxxdydx=1-logxx2[∵ddxf(x)g(x)=g(x)f'(x)-f(x)g'(x)[g(x)]2]
Put dydx=0
1-logxx2=01-logx=0⇒logx=1⇒x=eNow,d2ydx2=x2-1x-(1-logx)2xx22[∵ddxf(x)g(x)=g(x)f'(x)-f(x)g'(x)[g(x)]2]
At x=e,d2ydx2≤0, maxima
The maximum value at x =e is y=logee=1e
Hence the maximum value of logxx in 2,∞ is 1e.
Hence, option (D) is correct answer.
The value of b for which function f(x)=sinx-bx+c is decreasing in the interval -∞,∞ is given by