The maximum value of (sec−1x)2+(cosec−1x)2 is equal to
π24
5π24
π2
None of these
I=(sec−1x)2+(cosec−1x)2 =(sec−1x+cosec−1x)2−2sec−1x cosec−1x =π24−2sec−1x(π2−sec−1x) =π24+2((sec−1x)2−π2(sec−1x)+π216−π216) =π24+2(sec−1x−π4)2−π28⇒Imax=π24+2×9π216−π28 =5π42
If (tan−1x)2+(cot−1x)2=5π28, then x is equal to