The correct option is B 32
Let f(θ)=sin2(90+30+θ)+sin2(90+30−θ)
=[√32cosθ−12sinθ]2+[√32cosθ+12sinθ]2
=34cos2θ+14sin2θ−√32cosθsinθ+34cos2θ+14sin2θ+√32cosθsinθ
=32cos2θ+12sin2θ
=32(1−sin2θ)+12sin2θ
=32−32sin2θ+12sin2θ
=32−sin2θ
For f(θ) to be maximum, sin2θ must have minimum value, which is 0.
∴32 is the maximum value of f(θ).