The correct option is A 1
f(x)=sin3x+cos3x
f′(x)=3sin2xcosx−3cos2xsinx=0
3sinxcosx(sinx−cosx)=0
It can also be written as
(3/2)sin2x(sinx−cosx)=0
sin2x=0 or sinx−cosx=0
x=π/4
Check for second derivative
3(2sinxcos2x+sin2x(−sinx))−3(cos2xcosx+2cosx(−sinx)sinx)
(2sinxcos2x−sin3x−cos3x+2sin2xcosx)
Putsinx=1/√2, cosx=1/√2
=√2−1/√2>0
Therefore sin2x=0will give maximum
2x=nπ
x=nπ/2
Take value of n=1
x=π/2
f(x)=sin3(π/2)+cos3(π/2)=1