The maximum value of sinx+π6+cosx+π6 in the interval 0,π2 is attained at
x=π12
x=π6
x=π3
x=π2
Explanation for the correct option:
sinx+π6+cosx+π6
Multiplying and dividing by 2,
=212sinx+π6+12cosx+π6=2cosπ4sinx+π6+sinπ4cosx+π6=2sinx+π6+π4[∵cosAsinB+sinAcosB=sin(A+B)]
The expression has a a maximum value when x+π6+π4=π2 and the maximum value is 2.
Thus, x=π2-π6-π4=π12
Hence the correct option is option(A)
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?