wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The maximum value of sin2 (120° + θ) + sin2 (120° − θ) is

(a) 1/2
(b) 3/2
(c) 1/4
(d) 3/4

Open in App
Solution

(b) 32

Let f(θ) =sin2(90+30+θ)+ sin2(90+30-θ) =cos(30+θ)2+cos(30-θ)2 Using sin(90+A) = cosA =32cosθ-12sinθ2+32cosθ+12sinθ2 = 34cos2θ+14sin2θ-32cosθ sinθ+ 34cos2θ+14sin2θ+32cosθ sinθ =32cos2θ+12sin2θ =321-sin2 θ+12sin2θ =32-32sin2 θ+12sin2θ =32-sin2θFor f(θ) to be maximum, sin2 θ must have minimum value, which is 0. 32 is the maximum value of fθ.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon