Consider the given function
f(x)=39cos2θ+8sinθcosθ+3sin2θ
f(x)=38cos2θ+8sinθcosθ+2sin2θ+sin2θ+cos2θ
f(x)=38cos2θ+8sinθcosθ+2sin2θ+1
f(x)=38cos2θ+4sinθcosθ+4sinθcosθ+2sin2θ+1
f(x)=34cosθ(2cosθ+sinθ)+2sinθ(2cosθ+sinθ)+1
f(x)=3(2cosθ+sinθ)(4cosθ+2sinθ)+1
For the maximum value of expression the denominator must be minimum and for denominator to be minimum,
(2cosθ+sinθ)(4cosθ+2sinθ) can be zero.
When
(2cosθ+sinθ)(4cosθ+2sinθ)=0
⇒2cosθ+sinθ=0,4cosθ+2sinθ=0
⇒2cosθ=−sinθ,4cosθ=−2sinθ
⇒tanθ=−2,tanθ=−2
Therefore, the maximum value of expression
=3(2cosθ+sinθ)(4cosθ+2sinθ)+1
=30×0+1
=3
Hence, this is the answer.