The maximum value of the expression 1sin2θ+3sinθcosθ+5cos2θ is
2
3
4
5
f(θ)=1sin2θ+3sinθcostheta+5cos2θ
Let g(θ)=sin2θ+3sinθcosθ+5cos2θ
= 1−cos2θ2+5(1+cos2θ2)+32sin2θ
= 3 + 2 cos2θ+32sin2θ
g(θ)min=3−√4+94=3+52=12
⇒ f(θ)=2