Clearly, domain of the function is [2,4]. Now, f′(x)=1√x−2−12√4−x f′(x)=0 ⇒√x−2=2√4−x ⇒x−2=16−4x
x=185
Now, f(2)=√2,f(185)=2√185−2+√4−185=√10,
f(4)=2√2
By above obtained values, we can say that x=(185)is the point of global maxima.
Hence, range of the function is [√2,√10].