The correct option is D 129
x2+42≤13x⇒x2−13x+42≤0⇒(x−6)(x−7)≤0⇒x∈[6,7]
Now, f(x)=2x3−18x2+48x−11
f′(x)=6x2−36x+48⇒f′(x)=6(x2−6x+8)⇒f′(x)=6(x−2)(x−4)∴f′(x)>0 (∵x∈[6,7])
So, f is strictly increasing in [6,7].
So, f(7) is the maximum value.
Hence, the maximum is
f(7)=2×73−18×72+48×7−11 =7(98−126+48)−11 =7×20−11 =129