The correct option is A 122
S={x∈R:x2+30≤11x}
x2+30≤11x
⇒x2−11x+30≤0
⇒x2−6x−5x+30≤0
⇒(x−5)(x−6)≤0
⇒x∈[5,6]
Now, f(x)=3x3−18x2+27x−40
f′(x)=9x2−36x+27
⇒f′(x)=9(x2−4x+3)
f′(5)=72>0 ⋯(1)
f′′(x)=9(2x−4)
f′′(x)>0 ∀ x∈[5,6]
⇒f′(x) is strictly increasing in the interval [5,6] ⋯(2)
From (1) and (2), we conclude
f′(x)>0 ∀ x∈[5,6]
⇒f(x) is strictly increasing in the interval [5,6]
∴ Maximum value of f(x) when x∈[5,6] is f(6)=122