The maximum value of |z| satisfying the equation 112(z+¯¯¯z)2=1−13|z|2 is:
4
6
Let z=reiθ.Then we have
r212(eiθ+e−iθ)2=1−13r2
⇒r2cos2θ3=1−r23
⇒r2=3cos2θ+1≤3
⇒max(r)=√3 i.e., max |z| = √3