The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation when
(i) the wrong item is omitted,
(ii) the wrong item is replaced by 12.
Mean =10⇒∑20i=1xi20=10
⇒ ∑20i=1 xi=200
SD=2⇒σ2=4
⇒ ∑20i=1x2i20−(10)2=4
⇒ ∑20i=1 x2i=2080
Thus, incorrect (∑20i=1 x2i)=200 and incorrect (∑20i=1 x2i)=2080
CASE (i) When the wrong item is omitted
On omitting 8, we are left with 19 observations.
∴ correct(∑19i=1xi)=incorrect(∑20i=1xi)−8
= (200 - 8) =192.
Thus, correct (∑19i=1xi)=192
∴ correct mean =19219=10.105 . . . (i)
Also, correct (∑19i=1x2i) = incorrect (∑20i=1x2i)−64
= (2080 - 64) = 2016.
∴ correct variance =119 (correct∑19i=1x2i)−(correct mean)2
(119×2016)−(19219)2=(201619−36864361)
=(38304−36864)361=1440361
∴ correct SD=√1440361=12√1019=(12×3.162)19
=37.94419=1.997
∴ mean = 10.105 and SD = 1.997
CASE (II) When incorrect observation 8 is replaced by 12.
Incorrect (∑20i=1xi)=200
⇒ correct (∑20i=1xi)=(200−8+12)=204
⇒ correct mean =20420=10.2
Also, incorrect (∑20i=1x2i)=2080
⇒ correct(∑20i=1x2i)=(2080−82+122)=2160
⇒ correct variance =correct(∑20i=1x2i)20−(correct mean)2
={216020−(10.2)2}=(108−104.04)=3.96
⇒ correct SD=√3.96=1.989
Thus, in this case, we have mean = 10.2 and SD = 1.989