(i)
The given total number of observations is 20 and the given incorrect mean and standard deviation is 10 and 2 respectively.
The incorrect sum of observations is,
x ¯ = 1 n ∑ i=1 n x i 10= 1 20 ∑ i=1 20 x i ∑ i=1 20 x i =200
So, the incorrect sum of observations is 200.
The correct sum of observation will be,
200−8=192
The correct mean is,
correct mean= correct sum 19 = 192 19 =10.1
The standard deviation will be,
σ= 1 n ∑ i=1 n x i 2 − 1 n 2 ( ∑ i=1 n x i ) 2 2= 1 n ∑ i=1 n x i 2 − ( x ¯ ) 2 2= 1 20 ∑ i=1 n x i 2 − ( 10 ) 2
Squaring both sides,
4= 1 20 ∑ i=1 n x i 2 −100 1 20 ∑ i=1 n x i 2 =104 ∑ i=1 n x i 2 =2080
So, incorrect ∑ i=1 n x i 2 is 2080.
The correct ∑ i=1 n x i 2 is,
correct ∑ i=1 n x i 2 =incorrect ∑ i=1 n x i 2 − ( 8 ) 2 =2080−64 =2016
The correct standard deviation will be,
correct standard deviation= correct ∑ i=1 n x i 2 n − ( correct mean ) 2 = 2016 19 − ( 10.1 ) 2 = 4.09 =2.02
Thus, the correct mean is 10.1 and the correct standard deviation is 2.02.
(ii)
The incorrect sum of observations is 200.
When 8 is replaced by 12, then the correct sum of observations will be,
correct sum of observations=200−8+12 =204
The correct mean is,
correct mean= correct sum 20 = 204 20 =10.2
The standard deviation is,
σ= 1 n ∑ i=1 n x i 2 − 1 n 2 ( ∑ i=1 n x i ) 2 2= 1 n ∑ i=1 n x i 2 − ( x ¯ ) 2 2= 1 20 ∑ i=1 n x i 2 − ( 10 ) 2
Squaring both sides,
4= 1 20 ∑ i=1 n x i 2 −100 1 20 ∑ i=1 n x i 2 =104 ∑ i=1 n x i 2 =2080
So, incorrect ∑ i=1 n x i 2 is 2080.
The correct ∑ i=1 n x i 2 is,
correct ∑ i=1 n x i 2 =incorrect ∑ i=1 n x i 2 − ( 8 ) 2 + ( 12 ) 2 =2080−64+144 =2160
The correct standard deviation will be,
correct standard deviation= correct ∑ i=1 n x i 2 n − ( correct mean ) 2 = 2160 20 − ( 10.2 ) 2 = 3.96 =1.98
Thus, the correct mean is 10.2 and the correct standard deviation is 1.98.