For two sets of observation
xi,i=1,2,3,.....n1 and
yj,j=1,2,3,.....n2
Given:
¯¯¯x1=1n1∑n1i=1xi
and
¯¯¯x2=1n2∑n2j=1yj
⇒s 21=1n1∑n1i=1(xi−¯¯¯x1)2
and
⇒s 22=1n2∑n2j=1(yj−¯¯¯x2)2
Mean, ¯¯¯x=1n1+n2[∑n1i=1xi+∑n2j=1yj]
¯¯¯x=n1¯¯¯x1+n2¯¯¯x2n1+n2
S.D2=1n1+n2[∑n1i=1(xi−¯¯¯x1)2+∑n2j=1(yj−¯¯¯x2)2]
Now,
∑n1i=1(xi−¯¯¯x)2=∑n1i=1(xi−¯¯¯x1+¯¯¯x1−¯¯¯x)2
=∑n1i=1(xi−¯¯¯x1)2+∑n1i=1(x1−¯¯¯x)2+2(¯¯¯x1−¯¯¯x)∑n1i=1(xi−¯¯¯x1)
But, ∑n1i=1(xi−¯¯¯x1)=0
[Algebraic sum of the deviation of values of first series from their mean is zero]
Also,
∑n1i=1(xi−¯¯¯x)2=n1s 21+n1(¯¯¯x1−¯¯¯x)2
∑n1i=1(xi−¯¯¯x)2=n1s 21+n1d21
Where d1=¯¯¯x1−¯¯¯x
∴ Combined standard division
S.D=√n1(s 21+d 21)+n2(s 22+d2)2n1+n2
Where,
d1=¯¯¯x1−¯¯¯x=¯¯¯x1−n1¯¯¯x1+n2¯¯¯x2n1+n2
d1=n2(¯¯¯x1−¯¯¯x2)n1+n2
And
d2=¯¯¯x2−¯¯¯x=¯¯¯x2−n1¯¯¯x1+n2¯¯¯x2n1+n2
d2=n1(¯¯¯x2−¯¯¯x1)n1+n2
∴S.D2=1n1+n2[n1s21+n2s22+n1n22(¯¯¯x1−¯¯¯x2)2(n1+n2)2+n2n21(¯¯¯x2−¯¯¯x1)2(n1+n2)2]
S.D.=√n1s21+n2s22n1+n2+n1n2(¯¯¯x1−¯¯¯x2)2(n1+n2)2
Hence proved.