Let us find the correct mean.
Mean of 20 items, ¯x=∑xn=40
⇒∑x20=40
⇒∑x=20×40=800
Corrected ∑x=800−(wrongvalue)+(correctvalue)
Now, corrected ∑x=800−53+43=790.
∴ The corrected Mean=79020=39.5
Variance, σ2=∑x2n−(∑xn)2=225 (given)
⇒∑x220−402=225
⇒∑x2−32000=225×20=4500
∴∑x2=32000+4500=36500
corrected ∑x2=36500−(wrongvalue)2+(correctvalue)2
corrected ∑x2=36500−532+432=36500−2809+1849
=36500−960=35540.
Now, the corrected σ2=Corrected∑x2n−(Correctedmean)2
=3554020−(39.5)2
=1777−1560.25=216.75
Corrected σ=√216.75≃14.72
∴ The corrected Mean=39.5 and the corrected S.D. ≃14.72.