Let the remaining two observation be x and y
The observation are 2,4,10,12,14,x,y
Mean =¯x=2+4+10+12+14+x+y7=8
⇒56=42+x+y
⇒x+y=14 ......(1)
Variance =16=1n7∑i=l(Xi−¯X)2
16=17[(−6)2+(−4)2+(2)2+(4)2+(6)2+x2+y2−2×8(x+y)+2×(8)2]
16=17[36+16+4+6+36+x2+y2−16(14)+2(64)] ...........[using (1)]
16=17[108+x2+y2−224+128]
16=17[12+x2+y2]
⇒x2+y2=112−12=100
x2+y2=100 ..........(2)
From (1), we obtain
x2+y2+2xy=196 ....(3)
From (2) and (3), we obtain
2xy=196−100
⇒2xy=96 ...........(4)
subtracting (4) from (2), we obtain
x2+y2−2xy=100−96
⇒(x−y)2=4
⇒x−y=±2 ............(5)
Therefore, from (1) and (5) we obtain
x=8 and y=6 when x−y=2
x=6 and y=8 when x−y=−2
Thus the remaining observation are 6 and 8