Let the other two observations are x and y
∴ Our observations are 2,4,10,12,14,x,y
Finding a relation between x and y using mean
Given Mean =8
i.e. Sum of observationsNumber of observations=8
⇒2+4+10+12+14+x+y7=8
⇒42+x+y=7×8
⇒x+y=56−42
⇒x+y=14 ....(1)
Finding another relation between x and y using variance
∴ Variance =16
⇒1N∑(xi−¯¯¯x)2=16
⇒17[(2−8)2+(4−8)2+(10−8)2+(12−8)2+(14−8)2+(x−8)2+(y−8)2]=16
⇒17[(−6)2+(−4)2+(2)2+(4)2+(6)2+(x−8)2+(y−8)2]=16
⇒17[36+16+4+16+36+x2+(8)2−2(8)x+y2+(8)2−2(8)y]=16
⇒[108+x2+64−16x+y2+64−16y]=16×7
⇒[236+x2+y2−16y−16x]=112
⇒[236+x2+y2−16(x+y)]=112
⇒[236+x2+y2−16(14)]=112 (From (1))
⇒236+x2+y2−224=112
⇒x2+y2=112−236+224
⇒x2+y2=100 ...(2)
From (1)
⇒x+y=14
Squaring both sides
⇒(x+y)2=142
⇒x2+y2+2xy=196
⇒100+2xy=196 (from (2))
⇒2xy=196−100
⇒2xy=96
⇒xy=48
⇒x=48y ...(3)
Finding values of x and y
Substituing (3) in (1), we get :
⇒48y+y=14
⇒48+y2=14y
⇒y2−14y+48=0
⇒y2−6y−8y+48=0
⇒y(y−6)−8(y−6)=0
⇒(y−6)(y−8)=0
So, y=6 or y=8
Now, substituting y=6 in equation (1), we get
x=8
Now, substituting y=8 in equation (1), we get
x=6
So, x=6 or x=8