The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6,7,10,12,12 and 13, find the remaining two observations.
Let the remaining two observations are a and b
Given, ¯¯¯x=9 and σ2=9.25
∵¯¯¯x=9
⇒Sum of all observationsNumber of observations=9
⇒Sum of all observations=9×8
⇒6+7+10+12+12+13+a+b=72
⇒60+a+b=72
⇒a+b=72−60
⇒a+b=12 ...(i)
Again σ2=∑x2in−(∑xin) or ∑x2in−(¯¯¯x)2
⇒9.25=36+49+100+144+144+169+a2+b28−(9)2
⇒9.25=642+a2+b28−81 ⇒9.25+81=642+a2+b28
⇒90.25×8=642+a2+b2 ⇒a2+b2=722−642
⇒a2+b2=80 ....(ii)
Now, from Eq. (i) put b = 12 -a in Eq. (ii),
a2+(12−a)2=80
⇒a2+144+a2−24a=80 ⇒2a2−24a+144−80=0
⇒2a2−24a+64=0 a2−24a+32=0
⇒a2−8a−4a+32=0 ⇒a(a−8)−4(a−8)=0
⇒(a−4)(a−8)=0 ⇒a=4 or a=8
From Eq. (i) b = 8 or b = 4
Hence, observations are 4 and 8.