The mean and variance of seven observations are 8 and 16 respectively. If five of these are 2, 4, 10, 12, 14,find the remaining two observations.
Let the remaining two observations be x and y. Then,
mean=8⇒2+4+10+12+14+x+y7=8
⇒ 42 + x + y = 56
⇒ x + y = 14 . . . (i)
Also, variance =16
⇒ 17 (22+42+102+122+142+x2+y2)−82=16
[∵ σ2=∑x2in−(¯x)2]
⇒ 17 (460+x2+y2)=80
⇒ 460+x2+y2=560
⇒ x2+y2=100 . . . (ii)
Now, (x+y)2+(x−y)2=2(x2+y2)
⇒ (x−y)2=2(x2+y2)−(x+y)2
⇒ (x−y)2=(2×100)−(14)2=(200−196)=4
⇒ x−y=±2
Now, x + y = 14, x - y = 2 ⇒ x = 8, y = 6;
x + y = 14, x - y =-2 ⇒ x = 6, y = 8.
Hence, the remaining two observations are 6 and 8.