The correct option is
D n(n+1)d(2n+1)Given series is a,a+d,a+2d,...,a+2nd
mean(¯x)=a+a+d+a+2d+....+a+2nd2n+1
=a(2n+1)+(d+2d+....+2nd)2n+1
=a(2n+1)+d(1+2z+....2n)2n+1
=a(2n+1)+d2n(2n+1)22n+1
=a+nd
Now, deviation from mean i.e., xi−¯x
nd,(n−1)d,(n−2)d,....0,(n−1)d,(n−2)d,nd
Now, mean deviation from meam
=nd+(n−1)d+(n−2)d+....+0+d+2d+....d(n−1)d+(n−2)d+nd2n+1
=2d(1+2+3+...(n−1)+(n−2)+n)2n+1
=2(n(n+1)2)d2n+1=n(n+1)d2n+1