The mean deviation of the series a, a+d , a+2d,.... a+2n from its mean is
n(n+1)d2n+1
xi|xi−¯¯¯¯¯X|=|xi−(a+nd)|anda+d(n−1)da+2d(n−2)da+3d(n−3)d::::a+(n−1)dda+nd0a+(n+1)dd::::a+2ndnd∑xi=(2n+1)(a+nd)∑|xi−¯¯¯x|=n(n+1)d
There are 2n+1 terms
⇒N=2n+1
∑xi=a+a+d+a+2d+a+3d+....+a+2nd=(2n+1)a+d(1+2+3+...+2n)
[a+a+a+.... (2n+1) times = (2n+1)a]
=(2n+1)a+2n(2n+1)d2
[Sum of the first n natural numbers is \( \frac{n(n+1)}{2}, but here we are considering the fir
= (2n+1)a+ (2n+1)nd = (2n+1)(a+nd)
¯¯¯¯¯X=(2n+1)(a+nd)(2n+1)=a+nd
∑|xi−¯¯¯¯¯X|=nd+(n−1)d+(n−2)d+....d+0+d+2d+3d+....+nd
= d (n+ (n-1)+(n-2)+....+1)+0+d (1+2+3+....+n)
= dn(n+1)2+dn(n+1)2 {∵1+2+3+...+n=n(n+1)2}
= n(n+1) d
Mean deviation about the mean = ∑|xi−¯¯¯¯X|N=n(n+1)d(2n+1)