The correct option is D None of these
Letthe15observationsbex1,x2,x3,.........,x13,x14,x15GivenMeanofobservations=32⇒∑(x1+x2+x3+.......x13+x14+x15)15=32⇒∑(x1+x2+x3+.......x13+x14+x15)=32×15=480Wheneachobservationisdecreasedby20percent.Thensumofobservations=∑(x1−x1×20100)+(x2−x2×20100)+(x3−x3×20100)+...........+(x13−x13×20100)+(x14−x14×20100)+(x15−x15×20100)=∑(x1+x2+x3+.......x13+x14+x15)−∑(x1×20100+x2×20100+x3×20100+...........+x13×20100+x14×20100+x15×20100)=480−∑[(x1+x2+x3+.......x13+x14+x15)×20100]=480−20100∑(x1+x2+x3+.......x13+x14+x15)=480−20100×480=480(1−0.2)=480×0.8=384NewMean=SumofobservationsNumberofobservations=38415=25.6