The correct option is C 4 and 4
Let the observations be 2,4,6,x,y.
Now, ¯¯¯x=∑xiN
⇒4=2+4+6+x+y5
⇒x+y=8 ...(i)
Also, σ2=∑x2iN−(¯¯¯x)2
⇒(5.2)2=4+16+36+x2+y25−(4)2
⇒x2+y2=50 ....(ii)
From equations (i) and (ii), we get
x2+(8−x)2=50
⇒2x2−16x+64=50
⇒2x2−16x+14=0
⇒x2−8x+7=0
⇒(x−1)(x−7)=0
⇒x=1,7
⇒y=7,1
Hence, remaining two observations are 1 and 7.