The mean of the following data is 42. Find the missing frequencies x and y if the sum of frequencies is 100.
Class interval0−1010−2020−3030−4040−5050−6060−7070−80Frequency710x13y10149
The given data is shown as follows:
Class interval | Frequency (fi) | Class mark (xi) | (fixi) |
0 - 10 | 7 | 5 | 35 |
10 - 20 | 10 | 15 | 150 |
20 - 30 | x | 25 | 25x |
30 - 40 | 13 | 35 | 455 |
40 - 50 | y | 45 | 45y |
50 - 60 | 10 | 55 | 550 |
60 - 70 | 14 | 65 | 910 |
70 - 80 | 9 | 75 | 675 |
Total | ∑fi=63+x+y | ∑(fi×xi)=2775+25x+45y |
Sum of the frequencies = 100
⇒ ∑fi = 100
⇒ 63 + x + y = 100
⇒ x + y = 100 - 63
⇒ x + y = 37
⇒ y = 37 - x – – – – – – (1)
Now, the mean of the given data is given by
¯x = ∑(fi×xi)/∑fi
⇒42= 2775+25x+45y100
⇒ 4200 = 2775 + 25 x + 45y
⇒4200 - 2775 = 25x + 45y
⇒ 1425 = 25x + 45(37 - x) [from (1)]
⇒ 1425 = 25x + 1665 - 45x
⇒ 20x = 1665 - 1425
⇒ 20x = 240
⇒ x = 12
If x = 12, then y = 37 - 12 = 25
Thus, the value of x is 12 and y is 25.