The mean of the numbers 50C01,50C23,50C45,...,50C5051 equals :
Consider,
(1+x)50=50C0+50C1x1+...+50C50x50 ...(1)
(1−x)50=50C0−50C1x1+...+50C50x50 ...(2)
(50C0+50C2x2+...+50C50x50)=12(1+x)50+(1−x)50
Integrating with limits 0 to 1, we get
∫10(50C0+50C2x2+...+50C50x50)=∫10(12(1+x)50+(1−x)50)
⇒[50C0x+50C23x3+50C45x5+...+50C50x5151]10
⇒[50C0(1)+50C23(1)3+50C45(1)5+...+50C50(1)5151]−[50C0(0)+50C23(0)3+50C45(0)5+...+50C50(0)5151]=12[(1+1)5151−(1−1)5151]−12[(1+0)5151−(1−0)5151]
The number of even terms from 0 to 50 are 12(51+1)=26
[Since, Number of terms from 0 to 50 are 51--(odd)]
=249×23×17×26
=24939×17
Hence, the correct option is C.