The correct option is D 2+loge(2e2+1)
Given, f(x)=2ex+1
we know, if f(x) is continuous function on [a,b] then
Mean value of the function is
M=1b−a∫baf(x)dx
∴ Mean value of the given function is
M=12−0∫202ex+1dx=∫20e−xe−x+1dx
Let 1+e−x=t
On differentiating
e−x(−1)dx=dt
∴M=−∫1+1e22dtt=∫21+1e2dtt (By changing limit of integration)
=[log|t|]21+1e2=log2−log∣∣∣1+1e2∣∣∣=log2−log(1+1e2)
(Here 1+1e2 is always positive, so we can omit modulus size)
=log2−log(1+e2e2)=2+log(21+e2)