The mean value of the numbers 30C01,30C23,.....,30C2021,....,30C2223,....,30C3031 equals
A
23131
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
41331
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
21331
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B41331 Consider (1+x)30=30C0+30C1x1+30C2x2+...+30C30x30...(i) and (1−x)30=30C0−30C1x1+30C2x2+...+30C30x30...(ii) adding (i) and (ii) we get 30C0+30C2x2+30C4x4+...+...+30C30x30 =12[(1+x)30+(1−x)30] integrating with respect to x with limit 0 to 1, we get 30C0+30C23+30C45+.....+30C3031=12[(1+x)3131−(1−x)3131]10=122313130C0+30C23+30C45.....+30C3031=23031 Now number of numbers from 30C01,30C23.....30C3031 are 16 ∴ Mean of these numbers is =30C01+30C23+30C45+....+30C303116 =23031×16=22631=41331.