The median of the following data is 525. Find the values of x and y, if the total frequency is 100.
Class IntervalFrequency0−1002100−2005200−300x300−40012400−50017500−60020600−700y700−8009800−9007900−10004 [4 MARKS]
Concept: 1 Mark
Application: 3 Marks
Class IntervalFrequencyCumulative frequency0−10022100−20057200−300x7+x300−4001219+x400−5001736+x500−6002056+x600−700y56+x+y700−800965+x+y800−900772+x+y900−1000476+x+y
It is given that n = 100
So, 76 + x + y = 100, i.e., x + y = 24---(1)
The median is 525, which lies in the class 500 - 600
So, l = 500, f = 20, cf = 36 + x, h = 100
Using the formula: Median =l+(n2−cff)h, we get
i.e., 525=500+(50−36−x20)×100
i.e., 525−500=(14−x)×5
i.e., 25=70−5x
i.e., 5x=70−25=45
i.e., x=9
From (1), we get 9+y=24
y = 24 - 9= 15
The values of x,y are 9,15 respectively.